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Abstract 

The explosive growth of the Artificial Intelligence market signifies the acceleration of a new phase in the 

industrial revolution. The challenges of global climate change and rapid technological evolution 

necessitate innovative approaches to improve carbon emission efficiency. While advancements in 

renewable energy and carbon capture technologies have been widely explored, the transformative potential 

of artificial intelligence in optimizing carbon emission efficiency remains underexamined. Based on the 

data of 285 Chinese cities from 2010 to 2022, this study examines the impact and mechanism of artificial 

intelligence on carbon emission efficiency through the Spatial Durbin Model (SDM). The research 

findings indicate that the development of artificial intelligence has effectively promoted the improvement 

of carbon emission efficiency, and the reduction effect remains consistent across different spatial weights. 

In terms of mechanism analysis, both technological research and development innovation and 

environmental policies have enhanced carbon emission efficiency. Finally, some suggestions are put 

forward to promote the development of artificial intelligence and energy conservation and emission 

reduction in China. 
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1. Introduction 

 
In the context of the increasingly serious climate change and environmental pollution, an increasing 

number of countries are dedicated to advance low-carbon transition strategies, seeking to reconcile 

economic development with ecological preservation. Nevertheless, the global carbon emission efficiency 

has stagnated, with an annual growth of merely 1.2% to 1.5%, which is far from sufficient to reach the 

targets proposed in the Paris Agreement. To cope with global warming and alleviate environmental 

pressure, facilitating the low-carbon transformation of high-energy-consuming industries is the key to 

achieving carbon neutrality. Artificial Intelligence (AI), recognized as a catalytic force in green economic 

transformation (Qian et al. 2023), demonstrates significant potential through its capacity to optimize 

resource allocation and operational efficiency(Chen and Jin 2023). Hence, as a new technological factor 

driving industrial transformation and development and promoting technological progress, AI will 

undoubtedly become an important module for countries to enhance carbon emission efficiency(Ge et al. 

2022; Wang et al. 2025)  

Currently, artificial intelligence is growing rapidly, and all industries are developing at a fast pace, 

reshaping the global industrial landscape. According to statistics, it is expected to reach 190.61 billion US 

dollars by 2025, with an annual growth rate of 37% (Guo et al. 2025). Moreover, the scale of China's  
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artificial intelligence industry has grown from 199.8 billion yuan in 2021 to an estimated 600 billion yuan 

in 2026 (Zhang et al. 2024). In terms of technological breakthroughs, generative AI has emerged as a key 

engine. OpenAI have significantly enhanced productivity in multiple fields through automated content 

generation. According to Gartner's prediction, by 2026, more than 80% of enterprises will integrate such 

tools (Li et al. 2025b). At the level of technology implementation, AI has deeply permeated multiple 

domains such as healthcare, finance, manufacturing, and education. Among them, in the healthcare field, 

the market size in 2023 increased by 42% , reaching 8.6 billion US dollars (Tao et al. 2024; Zhong et al. 

2024). Furthermore, through the integration of intelligent computing power networks and algorithm 

platforms, AI enables smart cities and intelligent manufacturing, promotes industrial optimization and 

upgrading (Jiang and Yu 2025; Wang and Wang 2025). 

Enhancing the efficiency of carbon emissions possesses distinctive advantages in attaining 

multiple goals, including economic growth, energy consumption reduction, and climate change 

response(Liu et al. 2022; Ding et al. 2023; Lee et al. 2024a). AI assumes a dual role as both an energy 

consumer and an enabler of efficiency. On one hand, AI technology is likely to cause a substantial increase 

in the power consumption and cooling resources demanded by new infrastructure, thereby generating more 

carbon emissions. On the other hand, in achieving the "dual carbon" goals, AI technology holds great 

promise. New infrastructure can lower the energy consumption per unit of data transmission through AI 

technology, significantly enhancing the benefits of carbon reduction. Notably, while the influence of 

technological advancement on carbon emissions has received considerable attention, as a biased 

technological progress, AI technology still has considerable scope for in-depth exploration regarding its 

impact on the "dual carbon" goals. In reaction to this context, numerous studies have commenced focusing 

on the relationship between AI and carbon emission efficiency, exploring and discussing it from 

perspectives such as scale effects (Zhang et al. 2024)and structural transformation (Chen et al. 2022), with 

providing feasible solutions for sustainable development. 

The spatial panel econometric model constructed in this study has three advantages: Firstly, it can 

effectively capture the spatial spillover effects generated by AI through information dissemination and 

economic connections. AI-driven carbon efficiency improvement is characterized by increasing marginal 

benefits, breaking through the limitations of the traditional environmental Kuznets curve. Secondly, it can 

not only quantify the direct impact of local AI on regional carbon emissions but also analyze its spatial 

radiation effect on neighboring regions, which is in line with the reality of cross-regional transmission of 

economic activities. Thirdly, by embedding both individual and time fixed effects, this model can precisely 

handle the complex data structure of multi-city panel data with both spatial and temporal dimensions, 

thereby ensuring the scientific and reliability of the empirical results.  In terms of method, we use the non-

expected output super efficiency SBM model to measure the level of carbon emission efficiency. It 

overcomes the shortcomings of the traditional radial DEA models and the non-radial models. In addition, 

we use the spatial Durbin model (SDM) to examine the spatial effects of AI on carbon emission efficiency.  

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 details the research design, including the econometric model, indicators, and data sources. 

Section 4 presents an analysis of the empirical results, including the benchmark analysis with the spatial 

effect test and robustness analysis. Section 5 further discusses the mechanisms. Finally, 

Section 6 concludes the paper and provides policy implications. 

 

2. Literature review 
 

With the rise of the Industrial 4.0 revolution, AI has had a significant impact on the economy and society 

and has become a key research point (Dehghani et al. 2018; Goralski and Tan 2022). AI refers to the use of 

machine learning, computer vision, deep learning, and other technologies to imitate human behavior, 

thereby achieving the replacement of human or mental labor (Liu et al. 2022). AI is a technology that uses 

machines to replace some human functions, which can automate the production process, improve 

operational quality, and enhance products and services(Rammer et al. 2022). As a new general-purpose 

technology (Akter et al. 2024), AI has been widely applied in various aspects such as industrial production, 

transportation, and service industries. Many scholars have studied the impact of AI on the green economy 

(Zhang et al. 2024). Among them, one view holds that AI can promote technological innovation and 

sustainable development, and AI has replaced the market of low-skilled traditional labor, mainly reflected 

in the application of industrial robots (Rammer et al. 2022; Almuaythir et al. 2024). Another view is that  
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AI has not improved production efficiency and may lead to the productivity paradox, which is not 

conducive to economic growth(Kalai et al. 2024). 

There is still controversy over the impact of AI on energy and the environment. On the one hand, 

some believe that the application of AI in the industrial sector can effectively enhance carbon emission 

efficiency(Chen and Jin 2023; Shan et al. 2025). Through the application of deep learning and big data 

technologies, energy utilization efficiency can be significantly improved(Tu et al. 2024). (Wang et al. 

2023) further pointed out that AI can improve environmental quality by optimizing energy use. This 

conclusion has been verified in the research on the application of industrial robots in China (Zhao et al. 

2024a), which shows that the use of industrial robots can achieve a marginal carbon reduction effect of 

about 5.44%. On the other hand, AI may also inhibit the improvement of carbon emission efficiency. Due 

to the large amount of data required for training AI models, this may lead to significant energy 

consumption (Wang and Wang 2025). Moreover, although the application of AI has improved energy 

efficiency, it has also reduced the unit energy cost, which may trigger a "rebound effect" (Han and Mao 

2024; Lee et al. 2024b; Guo et al. 2025), that is, enterprises may expand their production scale due to the 

cost reduction, thereby increasing total energy consumption. However, industrial robots, with their precise 

operations, can significantly optimize production processes and reduce energy waste by 15% to 23%, 

providing important support for sustainable development(Li et al. 2025a). 

As an emerging technology, AI demonstrates a significant spatial spillover effect. By facilitating 

the flow of factors between regions, areas with relatively backward technology can learn and imitate the 

innovative knowledge of advanced regions, thereby achieving a spillover effect of knowledge and 

technology(Mao et al. 2024; Luo and Feng 2024). Research shows that the AI patent citation network 

promotes cross-industry knowledge diffusion and indirectly reduces carbon emissions in related industries 

by approximately 10% to 12%. Moreover, AI not only enhances local carbon emission efficiency but also 

has a radiating effect on surrounding areas, promoting an overall improvement in carbon emission 

efficiency. Its technology diffusion speed is 3.2 times faster than that of traditional industries. 

Additionally, AI brings multiple economic benefits, such as increasing the labor income share(Dehghani et 

al. 2018; Goralski and Tan 2022; Cao et al. 2024), improving labor productivity (Zhou et al. 2024), and 

promoting economic growth and energy efficiency(Zhou et al. 2024; Zhong et al. 2024; Jiang and Yu 

2025) . 

AI exerts a substantial influence on urban pollution emissions, especially through technological 

innovation (Chen et al. 2022) and environmental policies. AI can effectively drive green innovation and 

establish cleaner production technology systems via process, technological innovation, and material 

substitution, minimizing resource input and waste output. It has been calculated that for every additional 

100 million yuan of subsidies for green technology research and development, a carbon efficiency gain of 

370 million yuan can be amplified through AI(Almuaythir et al. 2024). AI also promotes the application of 

technological innovation. Smart urban planning and management can better foster green transportation 

modalities, optimize traffic flow, and alleviate congestion, thereby minimizing the impact of vehicle 

emissions on the urban environment. Furthermore, the government encourage enterprises to adopt more 

environmentally friendly production methods with tax benefits or financial subsidies (Porter and Linde 

1995). Under regulatory pressure, enterprises are obligated to undertake technological innovation and 

implement clean production techniques, thereby enhancing resource efficiency, reducing carbon emissions, 

and supporting sustainable development(Cappello et al. 2022). These measures might compel enterprises 

to utilize AI to develop more efficient energy systems, thus improving carbon emission efficiency (Zhao et 

al. 2024b). 

 

3. Research Design 

 
3.1 Method 

Given that carbon emissions exhibit externalities and that AI can improve coordination and cooperation 

among regions, the spatial effects of AI on carbon emission efficiency cannot be ignored. Thus, this study 

refers to existing research, and a spatial panel econometric model is constructed as follows: 

 

Ceeit = α0 + ρ∑ WijAIit + βAIit + φ∑ Xit + θ1∑ WijAIit + θ2∑ WijXij + μit + εit
n

i=1

n

i=1

n

i=1

n

i=1
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where i and t denote the region and year, respectively; α denotes the intercept term; X represents a set of 

control variables, Wij denotes the spatial weight matrix, 𝜌，𝜃1 ，𝜃2 are the spatial correlation coefficients, 

μit indicates the individual fixed effects, and εit stands for the random error term. 

Before conducting model estimation, this study adheres to a rigorous spatial econometric analysis 

process: Firstly, the global Moran's I index is calculated to test the spatial autocorrelation between AI and 

carbon emission efficiency. When the statistic is significantly different from zero, it indicates the existence 

of spatial dependence, which provides a theoretical basis for the application of spatial panel econometric 

models. Secondly, this study uses the Lagrange multiplier test (LM test) to compare the adaptability of the 

spatial Durbin model and the ordinary model. If the test result rejects the null hypothesis, it confirms the 

superiority of the spatial Durbin model. Thirdly, the likelihood ratio test (LR test) is used to verify the 

rationality of the model setting, and the Hausman test is employed to determine the choice between fixed 

effects and random effects. 

 

3.2 Variable definitions 

3.2.1 Dependent variable 

This paper constructed a non-expected output super efficiency SBM model to measure carbon emissions 

efficiency. Compared with the classic DEA models, super-efficiency SBM measures relative efficiency 

from non-radial and non-angle perspectives. Firstly, it considers the slack of input and output. Secondly, it 

addresses the issue of efficiency evaluation including undesirable output. Carbon emissions efficiency 

consists of several input and output variables as follows:  

 

(1) Input variables. Capital. Capital investment was measured in 2005 by calculating the capital stock for 

the base period. Labor, expressed by quantity of employments in each city at the year’s end. Some missing 

data were estimated by smoothing index method. Energy, measured by the total energy consumption of 

each prefecture-level city. 

 

(2) Output variables. Desirable output, actual GDP of each city over the years. Using the deflator to 

convert the nominal GDP of each year into constant prices based on 2010to eliminate the effect of 

changing prices. Undesirable output, total CO2 emissions and environmental pollution index of each 

prefecture-level city. Carbon emissions are calculated according to the IPCC Guidelines for National 

Greenhouse Gas Inventories. Coal, coke, kerosene, gasoline, diesel, fuel oil, and natural gas are selected as 

the primary energy types for carbon emission accounting. Additionally, the comprehensive environmental 

pollution index is calculated using baseline indicators of industrial wastewater, sulfur dioxide, and soot 

emissions. A higher index value indicates significant environmental degradation (Ge et al. 2022). 

 

3.2.2 Independent variable 

AI. This study selects the sum of AI application level and AI innovation level. Based on industrial robot 

data released by the International Federation of Robotics (IFR), covering six industries: electricity, gas and 

water supply; agriculture, forestry, and mining; manufacturing; animal husbandry and fishery; 

construction; and education, the industrial robot installation density at the prefecture-level city was 

calculated. The number of patents was used to measure AI innovation level. Following the methodology of 

Hu et al. (2021), Python was employed to crawl AI patent data for each prefecture-level city, with original 

data sourced from the Chinese Patent Database. The AI industry chain was divided into upstream, 

midstream, and downstream, corresponding to three categories: the basic layer (software and hardware 

infrastructure), the technical layer (general products and platforms), and the application layer (applied 

products and scenarios). These were classified at the city level to obtain AI patent data across different 

cities. Finally, the entropy method was applied to calculate the comprehensive AI index. 

 

3.2.3 Mediation variables and Control variables 

In this study, R&D innovation (inno) and environmental regulation (Env) are selected as mediating 

variables. Research and development innovation is represented by the proportion of R&D expenditure to 

GDP, while environmental regulation is measured by the proportion of environmental governance 

investment to GDP. 

The control variables selected in this study are operationalized as follows: (1) Urbanization level 

(City), measured by the ratio of urban population to the national total; (2) Economic development (Indu), 

represented by the logarithm of per capita GDP; (3) Labor force size (Labor), quantified through the  
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logarithm of the number of employed individuals; (4) Government intervention intensity (Gov), calculated 

as the proportion of municipal fiscal expenditure relative to GDP; (5) per capital carbon emission(Ce), 

measured by per capita carbon dioxide emissions of prefecture-level cities; and (6) Industrial 

Structure(Str), represented by the ratio of added value of tertiary industry to GDP. 

 

3.3 Data 

This paper analyzes 3705 observations panel data from 285 prefecture-level cities in China period 2010-

2022, excluding Hong Kong, Macau, and Taiwan, as show in Table 1. The data AI on originates from the 

International Federation of Robotics and the Chinese Patent Database. Other data are collected from the 

official websites of authoritative institutions such as the Ministry of Science and Technology, the National 

Bureau of Statistics, and the People's Bank of China. Due to the lack of information for specific cities and 

years, interpolation was used to generate the required data additions.  

 

Table 1. Descriptive statistics 

Variable Obs Mean Std.Dev. Min Max 

CEE 3,705 0.606 0.284 0.161 5.740 

AI 3,705 4.922 4.164 0.0629 25.91 

inno 3,705 0.0028 0.0027 0.00012 0.063 

gov 3,705 0.0743 0.0393 0.00395 0.257 

indu 3,705 10.74 0.594 8.576 13.06 

labor 3,705 3.604 0.853 1.611 7.042 

city 3,705 4.025 0.175 3.121 4.495 

env 3,705 0.0123 0.00493 0.00157 0.0335 

str 3,705 45.52 11.15 10.68 89.75 

ce 3,705 2.198 0.742 0.0864 5.372 

 

4. Analysis of empirical results 

 
4.1 Analysis of spatial econometric model testing 

Spatial autocorrelation is assessed using the global Moran's I index to examine whether AI exerts a 

synergistic local neighborhood effect on carbon emissions efficiency. As shown in Table 2, there is a 

significant positive relationship between AI development and carbon emission efficiency across different 

cities, as evidenced by a positive Moran's I value at the 1% significance level. Importantly, the 

geographical spillover effects of AI on carbon emission efficiency between regions should be considered. 

 

Table 2 Global Moran's I index of AI and carbon emission efficiency 

Year AI Carbon emission efficiency 

Moran’I p-value* z Moran’I z p-value* 

2010 0.080 0.003 2.792 0.026 4.570 0.000 

2011 0.136 0.000 4.563 0.030 5.053 0.000 

2012 0.124 0.000 5.024 0.033 6.593 0.000 

2013 0.178 0.000 5.909 0.041 6.743 0.000 

2014 0.185 0.000 6.130 0.043 6.968 0.000 

2015 0.241 0.000 7.962 0.043 7.036 0.000 

2016 0.239 0.000 7.883 0.051 8.188 0.000 

2017 0.219 0.000 7.487 0.034 5.816 0.000 

2018 0.154 0.000 5.357 0.020 3.668 0.000 

2019 0.194 0.000 6.432 0.037 6.174 0.000 

2020 0.160 0.000 5.309 0.028 4.830 0.000 

2021 0.175 0.000 5.798 0.028 4.755 0.000 

2022 0.219 0.000 7.340 0.037 6.246 0.000 

 

Following the research approach, the LM test, LR test, hasusman test are sequentially employed to 

select the optimal spatial econometric model. The test results are provided in Table 3. First, the null 

hypothesis (the spatial Durbin model degenerates into a general model) can be rejected because both  
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the LM and LR tests are passed at the 1 % significance level, suggesting that the spatial econometric model 

is superior to the ordinary model. Second, the Hausman test results show that fixed effects outperform 

random effects. In summary, to eliminate the influence of time factors and individual differences across 

cities, the spatial Durbin model is adopted. 

 

Table 3 Selection test of spatial econometric models 

Inspection type 
LM-

lag 

Robust-LM-

lag 

LM-

error 

Robust-LM-

error 
LR-lag LR-error Hausman 

Inspection 

results 

83.31 58.06 32.37 7.12 21.05 15.97 103.10 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

4.3 Benchmark analysis with the spatial effect test 

This research adopts the Durbin model based on the spatial economic geographic weight matrix to dissect 

the relationship between AI and carbon emission efficiency. The outcomes are presented in Table 4. The 

first column shows the regression results of the double fixed-effect model without incorporating the spatial 

weight matrix, revealing that AI significantly boosts urban carbon emission efficiency. This is 

predominantly attributed to the proliferation of applied AI, which empowers various industries, elevates 

production efficiency, and curbs the increase in carbon emissions. Columns 2 to 4 respectively exhibit the 

regression results of the spatial fixed effect models under the geographic economic weight matrix. In all 

the fixed-effect models, the influence of AI on urban carbon emission efficiency is significantly positive at 

the 1% significance level, indicating that AI continuously promotes the enhancement of urban carbon 

emission efficiency in the spatial dimension and further validates the positive relationship between AI and 

carbon emission efficiency. 

Regarding the control variables, the coefficient of government governance and economic 

development are significantly positive at the 1% significance level, indicating that contributes to the 

improvement of carbon emission efficiency. Especially in the nascent stage of the development of AI 

technology, the support and guidance of government policies play a crucial role. Nevertheless, the labor 

factor demonstrates a significant inhibitory effect to a certain extent, which might be ascribed to the 

shortage of high-skilled talents in the current human capital structure of China. Low-skilled laborers lack 

of competitiveness, thereby resulting in a certain lag in the development process. 

 

Table 4 Benchmark analysis with the spatial effect test 

 

 POOLEDOLS Time fixed Individual fixed Individual and time fixed 

 CEE CEE CEE CEE 

AI 0.012*** 0.00772*** 0.00240*** 0.00747*** 

 (6.32) (3.60) (-1.41) (3.50) 

gov 0.105** 0.0717*** 0.309* 0.0810*** 

 (1.11) (0.78) (-2.44) (0.89) 

indu 0.118*** 0.175*** 0.217*** 0.179*** 

 (5.62) (6.29) (12.90) (6.50) 

labor -0.126*** -0.131*** -0.0161* -0.130*** 

 (8.04) (-8.46) (-2.47) (-8.39) 

city 0.0002** 0.00307 -0.00217 -0.00204 

 (0.02) (0.19) (-0.09) (-0.13) 

ce -7.356*** -7.610*** -12.11*** -7.319*** 

 (7.48) (-8.11) (-10.97) (-7.82) 

str -0.0034** -0.00183* -0.00688*** -0.00186* 

 (0.43) (-2.11) (-12.64) (-2.15) 

W*AI  0.00637** 0.0136*** 0.00726* 

  (2.77) (4.80) (2.25) 

W*gov  0.224*** 0.172*** 0.149*** 

  (-1.16) (0.64) (-0.77) 

W*indu  -0.194*** -0.144*** -0.164*** 

  (-6.00) (-5.23) (-4.17) 
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Note：t statistics in parentheses，*p<0.05,**p<0.01,***p<0.001 
 

The results of the effect decomposition are shown in Table 5. The carbon emission reduction 

effect of the variable AI presents multi-dimensional spatial characteristics. Specifically, the direct effect 

coefficient of the development of artificial intelligence technology reached 0.0076 (p<0.01), indicating that 

it has a significant driving effect on the improvement of carbon emission efficiency in this region. This 

direct impact mainly stems from the iterative upgrading of intelligent manufacturing systems, the 

intelligent optimization of energy management systems, and the precise development of carbon emission 

monitoring technologies. In terms of spatial interaction effects, the research found that the development of 

artificial intelligence has significant indirect effects (0.0098, p<0.01), which verified the spatial spillover 

mechanism of artificial intelligence technology. This cross-regional transmission may be achieved through 

three channels. First, the gradient transfer of the artificial intelligence industrial chain in core cities forms a 

technology diffusion effect; Secondly, the network radiation effect generated by the construction of new 

infrastructure; Thirdly, the institutional demonstration effect of the construction of green innovation 

alliances in urban agglomerations. This corroborates the spatial interaction theory of new economic 

geography, indicating that the development of artificial intelligence not only reshapes the efficiency of 

local factor allocation but also reconstructs regional green development through spatial correlation 

networks. It is worth noting that the negative spatial effect of the economic development level in the 

control variables (-0.062, p<0.05) exposes the potential risk of the emergence of a row growth pattern. 

This pollution diffusion effect may stem from two contradictory transmission mechanisms: On the one 

hand, the expansion of economic scale triggers a rigid increase in energy consumption, forming a carbon 

lock-in effect; On the other hand, the phenomenon of "pollution havens" during the process of industrial 

transfer has exacerbated the negative externalities of the environment. This verifies the phased 

characteristics of the environmental Kuznets curve, that is, the current development stage has not yet 

crossed the critical threshold of carbon emissions. 

 

Table 5 Impact of AI on local neighbor carbon emission efficiency 

Variables Local effects Neighbor effects Total effect 

AI 0.0764*** 0.00978** 0.0174*** 

 (3.51) (2.74) (5.38) 

gov 0.0759*** 0.142*** 0.0656*** 

 (0.87) (0.63) (0.27) 

indu 0.181*** -0.161*** 0.0191*** 

 (6.92) (-3.67) (0.54) 

labor -0.130*** 0.0707 -0.0591** 

 (-8.67) (1.91) (-1.56) 

city -0.00222 -0.0326 -0.0348 

 (-0.14) (-0.74) (-0.72) 

ce -7.293*** -3.166 -10.46*** 

 (-7.80) (-1.32) (-3.79) 

str -0.00185* 0.00547** 0.00363* 

 (-2.12) (3.13) (2.19) 

Note：t statistics in parentheses，*p<0.05,**p<0.01,***p<0.001 

W*labor  0.0599* -0.0118 0.0818* 

  (2.20) (-1.06) (2.52) 

W*city  -0.0162 -0.0235 -0.0301 

  (-0.51) (-0.45) (-0.85) 

W*ce  -2.699 -8.919*** -1.407*** 

  (-1.34) (-3.92) (-0.68) 

W*str  0.00332** -0.00210* 0.00485** 

  (2.82) (-2.10) (3.17) 

ρ  0.264*** 0.314*** 0.160*** 

  (9.41) (11.31) (5.24) 

𝜎2 0.66*** 0.0273*** 0.0615*** 0.0267*** 

  (42.99) (42.96) (43.00) 

N 3705 3705 3705 3705 
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4.3 Robustness analysis 

Table 6 presents the regression results with the dependent variable replaced by per capita capital emissions 

and the matrix altered. Replacing the dependent variable with per capita capital emissions indicates that AI 

has an inhibitory effect on per capita carbon emissions. Meanwhile, the spatial econometric model's matrix 

was changed. This weight was calculated by squaring the reciprocal of the distance between two regions to 

analyze the impact of AI on carbon emissions through a geographical distance matrix rather than an 

economic geographical matrix. The sign of each explanatory variable is consistent with that in the previous 

section, further confirming the synergy effect of AI on carbon reduction between local and neighboring 

regions. 

 

Table 6 Robustness test 

 Per capita emissions Geographic distance 

Variables Direct Indirect Total Direct Indirect Total 

AI -0.951*** -1.149*** -2.100*** -0.00183 0.183*** 0.181*** 

 (11.58) (6.52) (-1.08) (-1.05) (4.59) (4.56) 

gov -30.52*** -120.4*** -150.9*** 0.211*** 7.002*** 6.791*** 

 (5.23) (6.82) (7.86) (1.69) (1.83) (1.77) 

indu -16.60*** 6.193*** -10.41*** 0.195*** -0.201*** -0.00667 

 (22.31) (-3.86) (8.11) (17.02) (-1.11) (-0.04) 

labor -8.209*** -5.518*** -13.73*** -0.0131* -0.295* -0.308* 

 (-28.19) (-7.70) (-18.87) (-2.18) (-2.39) (-2.52) 

city 0.259*** 5.131 5.390 -0.00142 0.317*** 0.316 

 (0.23) (1.39) (1.33) (-0.06) (0.38) (0.37) 

ce -381.5*** -309.4* 72.10 -12.36*** -230.1*** -242.4*** 

 (-7.31) (-2.24) (0.48) (-10.87) (-4.53) (-4.75) 

str -0.0598*** -0.547*** -0.607*** -0.00752*** -0.0584*** -0.0659*** 

 (-2.41) (-8.86) (-9.86) (-14.57) (-3.85) (-4.35) 

Note：t statistics in parentheses，*p<0.05,**p<0.01,***p<0.001 

 

4.4 Endogenous analysis 

In this study, the lagged 1-period AI (L. AI) was selected as a key instrumental variable, to address the 

potential issue of endogeneity, the two-step least squares instrumental variable (IV-2SLS) regression 

analysis was utilized. The results of the endogeneity test are presented in Table 7. In the first stage results, 

it is evident that the coefficient of the lagged 1-period AI (L.AI) is 0.006 which is statistically significant at 

the 1% level. This confirms that the lagged 1-period AI (L.AI) is appropriate as an instrumental variable 

and can effectively represent AI. In the outcomes of the subsequent phase, the parameter associated with 

AI stands at 0.023, which is likewise significant at the 1% level. This suggests that, after addressing 

concerns regarding endogeneity, AI persistently exerts a beneficial influence on the carbon emission 

efficiency. 

 

Table7. Endogeneity test results 

 (1) phase I  (2) phase II 

L.AI 0.006*** (2.78)  

AI  0.023∗∗∗ (8.57) 

Controlvariable Yes Yes 

Year Yes Yes 

Non-identifiability 636.728  

Weak instrumental variable 32960  

 

5. Conclusions and policy implications 

 
Based on the panel data of 285 municipalities in China from 2010 to 2022, this article empirically 

researches the influence and mechanism of AI on the efficiency of carbon emission. The consequences 

exhibit the following. 
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(1) China’s carbon emission efficiency level is not high. The carbon emission efficiency presents obvious 

heterogeneity. By regions, the carbon emission efficiency of the eastern area was larger than that of the 

central area and larger than that of the western area. (2) The development of AI has significantly promoted 

the improvement of the collaborative efficiency of pollution reduction and has a positive spatial spillover 

effect. The conclusion is still valid after the replacement space weight matrix, the tail-tail treatment of 

continuous variables, and the robustness test of excluding the sample of municipalities. (3) The mechanism 

analysis results show that the development of AI can reduce environmental pollution and carbon emissions 

by improving the level of regional technology innovation and the advanced level of industrial structure. 

This development can also promote the improvement of the carbon emission efficiency, that is, the 

intermediary effect between the level of technology innovation and the advanced level of industrial 

structure. Based on the above conclusions, this study proposes the following policy recommendations: 

 

(1) The government should enhance its support for technological innovation, especially in the field of AI. 

To promote the development of AI, the government needs to increase investment in education and science 

and technology, providing sufficient human and material resources for technological research and 

development and infrastructure construction. Additionally, the government should actively promote the 

deep integration of AI technology with industrial scenarios, facilitating the optimization and upgrading of 

the industrial structure and high-quality economic development.  

 

(2) Implement spatial differentiation strategies. In regions such as the Yangtze River Delta and the Pearl 

River Delta, explore an AI technology and carbon linked trading mechanism, combining the application of 

AI technology with carbon emissions trading to incentivize enterprises to adopt more efficient energy 

conservation and emission reduction measures. For the western energy bases, implement the policy with 

computing power for energy consumption to achieve efficient resource allocation and green development 

goals across regions. 

 

(3) Through the triple innovation of technology, market and policy, China is expected to achieve the 

carbon peaking goal before 2030. The in-depth application of AI technology can increase the emission 

reduction efficiency of key industries by 30% to 50%, but it is still necessary to be vigilant against the 

carbon lock-in effect and regional development imbalance risks that may be caused by digital technology. 

It is suggested to establish an AI Carbon Neutrality Development Index to dynamically assess the 

sustainability and long-term impact of various technological paths. 

 

(4) Issues such as technological transparency, data privacy protection, and employment structure 

adjustment remain key challenges for future development. Policy makers and technology developers need 

to work together to balance the potential and risks of AI technology. The academic and industrial sectors 

should deepen cooperation, not only promoting the application of technology but also building a more 

resilient social ethical framework to ensure that technological progress is in line with social development. 
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