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Abstract 

This study reviews three primary purposes of causal machine learning (CML) in marketing, merging impact 

evaluation of marketing interventions with machine learning algorithms for learning statistical patterns from data. 

Firstly, CML enables more credible impact evaluation by considering important control variables that simultaneously 

influence the intervention and business outcomes (such as sales) in a data-driven manner. Secondly, it facilitates the 

data-driven detection of customer segments for which a marketing intervention is particularly effective or 

ineffective, a process known as effect moderation or heterogeneity analysis. Thirdly, closely related to the second 

point, it allows for optimal customer segmentation into groups that should and should not be targeted by the 

intervention to maximize overall effectiveness. The discussion is grounded in recent empirical applications, all of which 

aim to enhance decision support in marketing by leveraging data-driven evaluation and optimization of interventions 

across different customer groups. 
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1 Introduction 

 

In recent decades, firms have seen a surge in customer data availability, spawning a growing literature on machine 

learning (ML) in business and marketing for predicting customer behavior like purchase decisions, price sensitivity, 

and churn, see e.g. Xia, Chatterjee, and May (2019), Hu, Dang, and Chintagunta (2019)), Donnelly, Ruiz, Blei, and 

Athey (2021), Arevalillo (2021), and Gordini and Veglio (2017). Predictive ML typically lacks insights into the causal 

effects of specific interventions, like a marketing campaign or a pricing policy, on business outcomes. For instance, when 

multiple predictor variables (like customer education or income) are similarly capable of capturing specific patterns in 

the outcome (like purchasing behavior), ML may prioritize some predictors over others in a way that does not reflect the 

effects of those predictors on the outcome. To address this limitation of predictive ML, a growing literature has 

developed causal machine learning (CML) algorithms that are tailored to impact evaluation, see for instance Athey and 

Imbens (2016), Belloni, Chernozhukov, Fernández-Val, and Hansen (2017), Chernozhukov, Chetverikov, Demirer, 

Duflo, Hansen, Newey, and Robins (2018), and Athey, Tibshirani, and Wager (2019). Unlike predictive ML, these 

algorithms are capable of properly assessing the causal effects of marketing interventions, provided certain 

statistical conditions hold. This capability is crucial for decision support, particularly in determining the viability of 

implementing a marketing intervention and identifying the optimal customer segments for its implementation. 

This study reviews three primary purposes of applying CML in marketing based on recent empirical 

applications. Firstly, CML enables more credible impact evaluation of marketing interventions by controlling in a 

data-driven way for important confounders, variables that simultaneously influence the intervention and the 

outcome. Not properly controlling for confounders entails a biased impact evaluation in which the effect of the 

marketing intervention on the outcome is (at least to some extent) mixed up with the effects of those confounders on 

the outcome. Secondly, CML can be applied for effect heterogeneity (or moderation) analysis to detect customer 

segments for which a marketing intervention is particularly effective or ineffective, see for instance Chernozhukov, 

Demirer, Duflo, and Fernandez-Val (2018). Thirdly, and closely related to the previous idea, CML permits finding 

an optimal customer segmentation (based on observed characteristics like customer’s income) into groups that 

should and should not be targeted by the intervention, in order to maximize its overall effectiveness, as discussed in 

Athey and Wager (2021). 
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loyalty card purchases 

past purchases 

 

2 Controlling for covariates by causal machine learning 

 

Evaluating the impact of interventions has a long tradition in marketing research, often through experiments with 

randomly assigned interventions, as seen in Bawa and Shoemaker (1989) (evaluating coupons), Fong, Fang, and Luo 

(2015) (evaluating discounts), and Gordon, Moakler, and Zettelmeyer (2022) (investigating online ads). However, in 

many contexts, experimental data is unavailable, leading to reliance on observational data where interventions are not 

random. In such cases, interventions are typically susceptible to selection bias, meaning that their receipt may depend 

on customer characteristics that also affect the outcome. Considering, for example, the effect of a loyalty card on 

purchasing behavior, it might be observed that customers with a loyalty purchase on average more from a store than 

those without. However, this association may not reflect the true impact of the loyalty card. In fact, past buyers may 

be more inclined to acquire a loyalty card, such that past purchases affect possession of the card and may also drive 

current purchases, thus contaminating impact evaluation of the loyalty card on current purchases. 

This example is illustrated in Figure 1, which presents a causal graph, see e.g. Pearl (2000), which represents 

impacts between variables by arrows. Such selection bias issues (e.g., due to differences in past purchases of customers 

with and without loyalty cards) can be addressed if the analyst can observe those characteristics that reflect all factors 

that simultaneously affect the choice of the intervention and the outcome. In this case, these characteristics, also 

known as covariates, satisfy an assumption known as selection-on-observables, see Imbens (2004). This permits 

evaluating the intervention by comparing the outcomes of customer groups with an without intervention who are 

similar in terms of covariates, such as age or income. Controlling for covariates in this way avoids confusion between 

an intervention’s impact and any effects of differences in covariates across the groups. 

 

 

 

Figure 1: Treatment selection bias when evaluating a loyalty card 

 

Relying on the selection-on-observables assumption involves determining which covariates to control for to 

ensure comparability between groups receiving and not receiving the intervention prior to its evaluation, which 

requires thorough domain knowledge. However, in many evaluations, particularly in big data contexts with a large 

number of variables, it is unclear which covariates are most crucial. Provided that the covariates are informative 

enough for the selection-on-observables assumption to hold, an unknown subset of covariates might be sufficient to 

satisfy this assumption. It then appears attractive to have a method that learns from the data which subset should be 

controlled for. Huber, Meier, and Wallimann (2022), for instance, assess the effect of train discounts in Switzerland 

on demand shifts, measured as rescheduling train trips to a different time than initially planned. They observe many 

demand-related factors that may affect both the discount intervention and the demand shift outcome, including train 

class, month, weekday, day time, public holidays, distance, and also trip-specific points of departure and arrival. 

Each combination of departure and arrival could be considered as separate covariate, entailing a number of 

potential control variables that is large compared to their database of roughly 6000 customers. This motivates the 

use of causal machine learning (CML) to control for covariates importantly affecting the intervention or the 

outcome in a data-driven manner. 

CML involves initially learning statistical models for the intervention and the outcome as functions of the 

covariates through predictive ML. These models are then incorporated into a so-called doubly robust (DR) statistical 

function for impact evaluation, as outlined in Robins, Rotnitzky, and Zhao (1994). One popular combination of 

ML and DR is termed Double Machine Learning (DML), see Chernozhukov, Chetverikov, Demirer, Duflo, 

Hansen, Newey, and Robins (2018), and can under certain conditions perform similarly well to cases where the 

analyst already knows the important covariates to be controlled for a priori. These conditions include not having an 

excessively large number of crucial covariates that significantly affect the intervention or outcome relative to the number 

of observations in the data (otherwise, it can be difficult for ML to identify all important covariates). 

Huber, Meier, and Wallimann (2022) use an CML algorithm named causal forest, see Wager and Athey 

(2018) and Athey, Tibshirani, and Wager (2019), to assess the discount rate’s effect on the demand shift outcome. 

The findings indicate that a one percentage point increase in the discount rate results in a 0.16 percentage point 

increase in the share of rescheduled trips, a statistically significant effect at the 5% level. Additionally, the authors  
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examine a binary definition of the intervention by comparing discounts of 30% or more versus less than 30%, using 

DML to estimate the average effect of the binary discount. The results suggest that discounts of 30% or more, on 

average, increase the number of demand shifts by 3.8 percentage points compared to lower discounts. When a more 

traditional impact evaluation method, namely matching, see Rosenbaum and Rubin (1983), the estimated impact has 

a substantially higher variance. Therefore, the data-driven selection of important covariates through CML 

algorithms may enhance the precision of impact evaluation by reducing its variance. 

Langen and Huber (2023) apply CML to evaluate the average impact of various types of coupons issued by a 

retailer on purchases per customer, considering a dataset of roughly 50,000 observations provided by the retailer as 

part of the AmExpert 2019 Machine Learning Hackathon, see AML (2019). The data include socio-economic 

customer characteristics like age, marital status, family size, and income, details on coupons received, coupon 

redemption, and the purchases made by registered customers between January 2012 and July 2013. The retailer ran 

multiple coupon campaigns in which customers received between 0 to 37 different coupons that offered discounts for 

individual items or even a range of products. The results indicate that receiving any coupon has a positive average 

effect during a campaign period, increasing expected daily expenditures by approximately 60 monetary units per 

customer. Furthermore, the estimated effects are heterogeneous across different coupon categories, with coupons 

for drugstore items and other food increasing daily spending by around 80 and 78 monetary units, respectively, 

and coupons for non-food products decreasing spending by approximately 24 monetary units (likely due to 

cannibalization effects), all statistically significant. 

While Huber, Meier, and Wallimann (2022) and Langen and Huber (2023) exemplify the application of 

CML for assessing the average impact of marketing interventions, it cannot be overstated that the appropriateness of 

such analyses depends on the satisfaction of the selection-on-observables assumption. To empirically verify this, 

Gordon, Moakler, and Zettelmeyer (2022) compared the results of 663 experiments conducted between November 

2019 and March 2020 on Facebook, evaluating the impact of ads on conversion outcomes such as purchases, page 

views, and downloads, with corresponding assessments based on CML and also matching using observational (i.e., 

non-experimental) data. The experiments encompassed approximately 7.9 billion user observations and over 38 

billion ad impressions, with the median ad experiment running for 30 days, involving about 7.3 million users across 

intervention and control groups. The conversion outcomes considered include variables occurring both earlier and 

later in a hypothetical purchase funnel. For instance, page views occur early in the purchase funnel, adding items to a 

cart occurs later, and purchase occurs last. The median experimental impacts on the upper, middle, and lower funnel 

outcomes amount to increases in conversion rates (measured relative to the conversion rate without ad) of 29%, 18%, 

and 5%, respectively. 

To estimate the impacts in the observational data, the applied CML and matching methods utilize a rich set of 

covariates, including user characteristics (e.g. age, gender, number of friends, number of ad impressions in the last 

28 days, personal interests), estimated intervention-specific conversion probabilities, and pre-intervention outcome 

variables (past conversion activities). If the selection-onobservables assumption holds and CML or matching properly 

control for all important factors jointly affecting ad assignments and outcomes, the estimated impacts should generally 

align closely with the experimental effects. However, using CML (or matching), the median impacts on the upper, 

middle, and lower funnel outcomes are 83% (173%), 58% (176%), and 24% (64%), respectively, indicating 

significant upward biases. Thus, although CML outperforms the more traditional matching method, it still notably 

overestimates the impacts when compared to experimental results. This highlights that CML is not a panacea, its 

accuracy crucially depends on data quality. 

 

3 Effect heterogeneity 
 

The previous section discussed evaluating the average impacts of marketing interventions in a population of interest, 

such as all customers. However, since customers are not homogeneous, some may respond differently to certain 

interventions than others. This motivates effect heterogeneity or moderation analysis, which involves investigating how 

effects differ across values of covariates, like customer characteristics, to determine which customer segments the 

intervention is particularly effective or ineffective for. These characteristics could be predetermined by the analyst, 

such as considering age as relevant covariate to examine whether the effectiveness of the intervention differs across 

both younger and older customers. Alternatively, a data-driven approach can be used to explore which (a priori 

unknown) set of covariates is most predictive of effect size and thus, the heterogeneity of effects. 

For example, Langen and Huber (2023) examine how providing coupons affects the purchasing behavior of 

various customer groups defined by predetermined covariates. Specifically, they investigate how the average impact of 

providing (any) coupons depends on customers’ age, income, family size, and pre-campaign expenditures. To 

achieve this, they follow Semenova and Chernozhukov (2021) and employ linear regression of the previously 

mentioned DR functions, which represent the expected impact as a function of the covariates, on indicators for 

membership in specific groups based on age, income, and family size. One finding of Langen and Huber (2023) 

is that the impact is more pronounced among customers who made either no or rather large purchases in the period 

prior to the campaign. This is illustrated in Figure 2, which depicts the average impacts across different customer  
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groups defined in terms of past purchases, with dots representing the impact estimates and bands representing the 

95% confidence intervals. 

 

Huber, Meier, and Wallimann (2022) examine 

heterogeneity in the effect of discounts for train tickets 

on demand shifts across a predetermined set of covariates 

that are relevant for characterizing customers and their 

travel purposes. These include age, gender, travel 

distance, indicators for leisure trips and commuting (with 

business trips as the reference category), and traveling 

during peak hours. Huber, Meier, and Wallimann (2022) 

find no significant effect heterogeneities across certain 

covariates like age, gender, or distance. However, they 

observe heterogeneity in the effect of leisure trips, 

indicating that, all else being equal, a one-percentage-

point increase in the discount rate increases the share of 

rescheduled trips by 0.29 percentage points more among 

leisure travelers than among business travelers. This 

result suggests that leisure travelers may be more flexible 

in terms of timing compared to business travelers. 

Moreover, Huber, Meier, and Wallimann (2022) explore effect heterogeneity in a data-driven manner, 

employing ML to identify covariates that most strongly predict the effect size of the intervention. To achieve this, the 

previously mentioned DR function is predicted as a function of all covariates using an ML algorithm like a random 

forest, see Ho (1995) and Breiman (2001) . Subsequently, covariates are ranked based on their importance for 

predicting effect heterogeneity, e.g., based on the coefficient estimates in a lasso regression. Across values of more 

important covariates, the impact of the intervention varies more substantially compared to less important covariates. 

Huber, Meier, and Wallimann (2022) find that demand-related characteristics such as seat capacity, utilization, 

departure time, and distance are the most influential predictors of effect size, with customer age also demonstrating 

some predictive power. 

 

4 Optimal policy learning 
 

Assessing effect heterogeneity is the foundation for optimal policy learning, which aims to optimally assign an 

intervention across customer segments depending on the expected effects within segments, such that overall 

effectiveness is maximized, see for instance Kitagawa and Tetenov (2018). This implies that some customer segments 

with particularly high effects might be targeted by the intervention, while others are not. For instance, Langen and 

Huber (2023) apply the optimal policy tree algorithm suggested in Athey and Wager (2021) to learn which customer 

segments should be optimally targeted by coupon campaigns in a way that the overall purchases by customers are 

maximized. Based on a predefined number of customer segments, this method conducts a data-driven customer 

segmentation in which only those segments with sufficiently high effects are targeted by coupon campaigns and 

visually displays the customer segmentation along with the intervention assignment using a decision tree. 

Figure 3 illustrates such a policy tree for the optimal allocation of coupons for drugstore items. It suggests 

issuing coupons to customers with unknown, low, or middle incomes, provided their daily pre-campaign 

expenditures did not exceed 900 monetary units and/or their family size is no more than 2 members. Customers in 

the higher-middle income group should receive drugstore coupons if their average daily in-store spending before the 

campaign did not exceed 100 monetary units. Finally, customers in the high-income group should only receive 

drugstore coupons if they previously purchased other food products at the store. 

While optimal policy trees are a powerful tool for optimal customer segmentation and intervention assignment, 

one issue worth noting is their potential instability 

across different datasets, which arises because 

changes in the sample composition can lead to 

different subsets of customers being identified as 

optimal segments. This phenomenon is particularly 

evident when there are multiple ways of generating 

subsamples that result in similar average overall 

effectiveness of the intervention. Even though 

this instability may seem impractical, the method 

represents a significant advancement in merging 

machine learning and impact evaluation to 

optimally target customers with marketing  

Figure 2: Effect heterogeneity across past purchases 

 

Figure 3: Policy tree for optimal coupon assignment 
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interventions. This is also because the easily interpretable tree structure makes the decision process regarding 

intervention assignment accessible in a non-technical manner. 

 

5 Conclusion 

 

Causal machine learning (CML) merges impact evaluation with machine learning, serving three primary purposes in 

marketing contexts, as outlined in this paper. Firstly, CML facilitates impact evaluation of marketing interventions 

by controlling for important covariates in a data-driven manner. Secondly, CML enables the detection of effect 

heterogeneity, allowing for the identification of customer segments that respond differently to marketing 

interventions. Thirdly, CML permits optimal customer segmentation and targeting by the intervention based on 

covariates, maximizing the intervention’s overall impact. Empirical examples from various studies, including 

evaluations of coupon campaigns, conversion ads on social media platforms, and the impact of discounted railway 

tickets on travel behavior, illustrate the practical application of CML in marketing research. Even though the 

utilization of CML is still limited outside of large tech companies, there is a growing trend towards its adoption, 

indicating a shift in corporate decision-making practices towards integrating causal methods into business analytics, as 

highlighted in the study by Hünermund, Kaminski, and Schmitt (2021). 
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