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Abstract 

First-Price-Sealed-Bid (FPSB) are widely used in both the public and private sectors. In a FPSB 

procurement common value auction, a seller must first estimate their cost to provide the product requested 

by the buyer and then determine a bid amount by adding a markup to the cost estimate. This markup must 

consider desired profits as well as informational uncertainties regarding the cost estimates since actual 
costs of production are known only after the product is produced.  In this paper, we investigate the impact 

of better cost estimates on firm profitability and bidding strategy in a two- and three-bidder auction. Based 

on field data from over 1000 procurement auctions, we assume that errors in cost estimation follow a 
normal distribution. This assumption greatly complicates the analysis such that finding an analytical 

solution is unlikely. Therefore, using a numerical solution approach, we find the equilibrium solution for 
each type of seller under a variety of parameter settings. We find that advantaged sellers will be more 

profitable yet submit more aggressive bids. These results depend on the number of advantaged and 

disadvantaged sellers competing. Indeed, if there is more than a single advantaged seller competing, they 
will submit very aggressive bids resulting in profits that may actually decrease as each gets better at 

estimating costs. Our results provide a clear understanding as to the importance of accurate product cost 
estimates and extends the research on the effects of cost estimation accuracy in procurement auctions.  

Keywords: Procurement auction, Information uncertainties, Asymmetric auctions 

1.0 Introduction 

A procurement auction is attractive to procurement managers and agents in that it is inexpensive to implement and 

thought to leverage competition thus allowing for lower purchasing costs to the buyer. Increasingly, the volume of 

goods sold via procurement auctions has been steadily increasing. In the US, the Federal Acquisition Regulations 

(FAR) strongly encourages the use of auctions in public sector procurements to be done via some type of auction. 

FAR’s suggestion is based on the perception that auctions increase competition, provide equal opportunity for a 

variety of sellers, and reduces the likelihood of corruption and seller collusion (Bajari et al., 2008).  In a recent 

report, the US Governmental Accountability Office (GAO) found that the number of procurement auctions increased 

from 7,193 in 2008 to 19,688 in 2012 for just four departments in the US federal government and suggested that the 

use of procurement auctions resulted in a savings to the US government of over $98 million (GAO, 2011). Ladick 

(2015) estimates that procurement auctions account for nearly 7% of total US government spending worth $31.2 

billion annually. The amount of spending via procurement auctions by the US State Department alone increased from 

just over $100 million in 2007 to over $231 million in 2010 (Wyld and Maurin, 2011). In addition to governmental 

spending, the use of procurement auctions in the private sector is expanding.  The Center of Advanced Purchasing 

Studies found that nearly 40 percent of all in North America companies use procurement auctions for purchasing 

(Beall et al., 2003) while nearly all of the US Fortune 500 and the International Fortune 1000 companies regularly 

use procurement auctions (Wyld and Maurin, 2011). In 2004, it was estimated that the global volume of purchases 

sold via procurement auctions was in the level of hundreds of billions of Euros (Plant 2004). From a seller’s 

perspective, procurement auctions offers numerous benefits such as the ability to reach new customers, having a 

market to sell underutilized capacity, and acquiring information about competitors’ cost structures (Karaba  g and 

Tan, 2017)  Given the attractiveness to sellers and buyers alike coupled with the widespread use of procurement 

auctions in both the public and private sectors and the volume of economic exchange resulting from their use, it is 

imperative that researchers understand the intricacies of how procurement auctions function. 

In many of the procurement scenarios above, the buying agent generally employs a First-Price-Sealed-Bid 

(FPSB) auction where all bids are opened at the same time and the seller with the lowest submitted bid is declared 

the winner in a winner take all format.  While recent studies have shown that other factors, such as firm reputation,  
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are sometimes considered (Brosig-Koch and Heinrich 2014; Haruvy and Katok 2013), it is still common for the seller 

with the lowest price to be selected (De Silva et al. 2008; Li and Philips 2012). As discussed, many companies, as 

part of their supply chain management strategy, routinely compete in procurement auctions for the right to sell a 

product or service to some buyer. In response to a public letting, if the buyer is a public agency, or a request for 

proposal (RFP), if the buyer is a private agency, the seller submits a bid stating what they are willing to charge to 

deliver the product or service. If any seller submits a high bid to insure they cover their costs, they reduce the 

probability that they will in fact win the contract. If the seller submits a lower bid, they will increase the probability 

of winning the contract at the expense of less than expected profits or even losses if the bid is below the cost of 

providing the product. During the bid preparation stage, a seller must estimate what its cost will be to deliver the 

product or service. A bid amount is calculated by adding a markup to this cost estimate which is then submitted to 

the buyer. Seller markup must account for desired profits as well as any information uncertainty regarding their cost 

estimate. Consider that the actual and true cost can only be determined after the completion of the product or service 

thus sellers must rely solely on an estimate of this true cost to prepare their bids. The economic consequences of poor 

cost estimation means that bid amounts must be high to account for estimation errors which results in bids that are 

often not competitive. Unfortunately, due to the wide variety of such factors as availability of resources, current and 

future capacity loads, future material and labor prices, etc., the process of cost estimation is computationally 

complex. Indeed, there is much research that studies various approaches to developing better cost estimates. Various 

qualitive methods such as nominal group methods, the Delphi technique, brainstorming and SWOT methods have 

been studied as well as various quantitative methods such as three-point estimating and various statistical techniques 

(Erkoyuncu et al., 2013). As the literature points out, there are numerous benefits associated with cost estimates that 

are less uncertain relative to competitors. Friedman (1956) points out that a company that utilizes a better cost 

estimation system than its competitors will be able to bid more aggressively, closer to its true costs, than will its 

competitors. Further, a company that has built a reputation in the market as a savvy estimator will cause its 

competitors to bid cautiously when competing against it. Such a reputation allows the savvy estimator to either 

increase their profit margins or decrease their markups to win more jobs.  Although cost estimates are private to each 

potential seller, they each have access to the same information about the product, via the public letting or RFP, when 

these estimates are made.  If we assume that cost structures are relatively similar between sellers, any differences in 

cost estimates between sellers suggests that the cost estimation systems used by each seller must have been different. 

A key consideration in the study of any auction contest is the role played by information. Specifically, a 

seller must process private information known only to themselves (private information), information known to all 

sellers (public information), and information not known by any seller (information uncertainty). While the role of 

public and private information has been extensively studied in the literature, the impact of information uncertainty on 

sellers in such auctions has received less attention. Reducing the information uncertainty is critical but challenging 

for a seller in a FBSP auction because the seller needs to submit a competitive (i.e., low) bid to win the auction but at 

the same time the bid needs to be high enough to protect the seller’s profit margin when the actual and true cost is 

determined after the completion of the product or service. One example of information uncertainty, which is the 

focus of this paper, lies in the ability of a seller that routinely competes in a procurement auction to estimate its 

production costs required to provide the product or service to the buyer.  

The literature has shown that the ability to estimate costs often differs between companies. De Silva et al. 

(2008), in an empirical study of construction highway projects, found that less experienced bidders demonstrated a 

greater dispersion in their cost estimates than did incumbent bidders. Li and Philips (2012) analyze 7,500 

construction procurement auctions from the state of Utah and find that the bids submitted by experienced sellers were 

more consistent. This allowed the experienced sellers to bid with higher markups thus realizing greater profits. Fry et 

al. (2016) found that companies with a smaller variance of bids submitted, i.e. consistent cost estimates, will on 

average submit lower bid amounts thus will win a higher percentage of jobs. Gilley and Karels (1981), in a 

traditional English style auction, found that when the variance in initial value estimate is small, bidders tend to bid 

more aggressively.  

While numerous methods and approaches to developing better cost estimates have been studied (Erkoyuncu et 

al., 2013), the focus of this paper is concerned with the impact of having better cost estimates on the performance of 

a seller that routinely competes in a procurement auction where the item being sold has a Common Value (CV) for 

all sellers.  Procurement CV auctions that have been studied in the literature include: auctions of fine art where the 

bidder has the intent to re-sale (McAfee and McMillan, 1987); federal offshore oil and gas drainage leases 

(Hendricks and Porter, 1988); US Forest Service timber auctions (Athey et al., 2011); as well as highway 

construction projects (Dyer and Kagel, 1996; Hong and Shum, 2002; De Silva et al., 2008).  In the CV model, the 

cost to complete the project or produce the item is the same for all sellers such that no seller has a cost advantage 

over another (as would be the case in a Private Value (PV) auction). Rather than knowing with certainty the common 
true cost, each seller utilizes their private cost estimation process to formulate a guess as to what this unknown 

common cost might be.  Based on this estimate, each seller prepares a bid amount that is submitted to the buyer 

where, using a FPSB format, the lowest bid is generally declared the winner.  Formally, let C be the unknown true 

cost for each seller. Each seller formulates a unique estimate, ci, i=1,…n, of C that is drawn from a sometimes  
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commonly known distribution H(ci/C).  If one seller utilizes a process that results in more accurate cost estimates 

than other sellers, H (ci/C) is different between sellers. Since seller cost estimates are drawn from different 

distributions, the sellers are different and the auction is said to be asymmetric. Compared to a symmetric auction, 

where sellers are alike in every way, asymmetric auctions are much more complex thus little is known about them 

(Aloysius et al, 2016). Recent literature has explored the intricacies of information asymmetries with respect to the 

distribution of seller values (Aloysius et al. 2016; Güth et al. 2005; Du 2018; Bergemann et al. 2020), information 

feedback (Elmaghraby et al. 2012), and information of competitors (Grosskopf et al. 2016; Kim 2008; Wooten et al. 

2020). This paper adds to this literature by exploring asymmetries commonly found in CV auctions where the cost to 

each seller is identical but the information about that value is different between all sellers. 

2.0 Related Literature 

Asymmetry of information is a crucial element of any auction problem and theoretical research on asymmetric CV 

auctions has generally been restricted to the two-seller case. Even then, the theoretical research literature has only 

been able to develop an equilibrium by assuming very specific and simplifying information structures and/or by 

limiting seller bidding strategies. For example, Syrgkanis et al. (2015), Hausch (1987), Englebrecht-Wiggans et al. 

(1983), Banerjee (2005), Campbell and Levin (2000), and Malueg and Orzach (2012) develop a mixed equilibria for 

a CV auction where sellers’ information regarding their value estimate is limited to a discrete signal, one that can 

take on only a few values. Laskowski and Slonim (1999) develop an equilibrium by restricting the bidding strategy 

of each seller, sellers are limited to adding a constant to their value estimate. Rothkopf (1969), utilizing a Weibull 

distribution to represent sellers’ uncertainty of their cost estimates, present an equilibrium for a multiplicative 

bidding strategy where sellers’ bids are limited to their cost estimate multiplied by a fixed scalar.  In the case of a 

procurement auction where a seller must estimate their cost of production, limiting the estimate to a discrete set of 

values (Syrgkanis et al. 2015; Hausch 1987; Englebrecht-Wiggans et al. 1983; Banerjee 2005; Campbell and Levin 

2000; and Malueg and Orzach 2009) or restricting the bidding strategy of a bidder (Laskowski and Slonim 1999; 

Kagel and Levin 1999; Rothkopf 1969) may be too restrictive limiting the generalizability of their results. Given that 

the theoretical analysis of auctions with asymmetric information structures is difficult, generally requiring 

simplifying or restricting assumptions, comparatively little is known about them relative to the more common 

symmetric information auctions. 

 Researchers have recently begun exploring the intricacies of information asymmetries in common value 

auctions with respect to possession of private information (Engelbrecht-Wiggans et al., 1983;  Hendricks and Porter, 

1988; McAfee and McMillan, 1987; Campbell and Levin, 2000), precision of information signal (Wooten et al. 

2020; Hausch 1987; Bergemann et al. 2020; Compte and Jehiel 2007; Kagel and Levin 1999),  information revelation 

(Harstad and Maresa 2003; Benoit and Dubra 2006), and competitive information (Grosskopf et al. 2016, Brocas and 

Carrillo 2017, Engelbrecht-Wiggans et al. 1983; Kim 2008). Kagel and Levin (1999) examine the impact of one 

bidder having better information in FPSB common value auctions. Utilizing a bounded rationality approximation, 

they find that when one bidder knows with certainty the value of the object being auctioned while other bidders rely 

on a signal from a range of possibilities, the disadvantaged bidders resort to more aggressive bidding than the 

advantaged bidders and  the advantaged bidder earns  greater profits than the disadvantaged bidders. Similarly, 

Grosskopf et al. (2016) look at the FPSB common value setting and experimentally test insiders with a range of 

possible values versus outsiders with a much larger range and find the insiders perform better. In both cases, 

unsurprisingly, the bidders with more precise value estimates realize greater profit than their less-informed 

competitors.  Using an experimental approach, Wooten et. al. (2020) study a series of two seller auctions where one 

seller possesses better information than another. One form of better information studied is where one seller is 

provided a more precise estimate of the common value than the other seller. The authors find that the seller with 

better estimates of cost make more profit and are more likely to avoid the winner’ curse. Focusing on a more realistic 

scenario, normally distributed cost estimates and asymmetric information, our paper adds to this literature by further 

exploring the impact of a particular information asymmetry that sellers likely experience in practice. Our paper 

assumes that sellers are asymmetric such that one seller is considered to be a savvy estimator whose cost estimates 

are more closely centered about the true cost than its competitors. Unlike most of the previous literature, we consider 

several  levels of  information precision, thus representing different degrees of asymmetry, to better understand its’ 

impact on seller bidding strategies.   

3.0 The Model 

Several empirical studies have shown that cost estimation errors tend to follow a bell-shaped distribution (Fry et al, 

2016; De Silva et al., 2008; Li and Philips, 2012; Wooten et al., 2020).  While the majority of the theoretical research 

assumes a Uniform distribution, allowing for many of the theoretical results that have been reported, such a 

distribution lacks realism. Dyer and Kagel (1996) suggest that many of the simplifying made in the auction literature, 

such as uniformly distributed cost estimates, have resulted in conditions that deviate from reality. It is their 

contention that this may explain some of the inconsistencies between practice and research thus research that make  
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more realistic assumptions is warranted.  In addition to the empirical studies above, we analyzed the cost estimation 

errors experienced by a large North American manufacturer. Representing over 1000 on-line procurement auctions, 

the data includes the manufacturer’s initial cost estimate used to prepare the bid as well as the actual cost to deliver 

the product. 

 

 
Figure 1: Cost Estimating Errors 

 

Figure 1 presents a graph of the difference between the cost estimate and the actual cost expressed as a percent. It is 

apparent that estimation errors from these auctions clearly follow a bell-shaped distribution. This evidence suggests 

that cost estimates relied on by many firms were likely drawn from a normal-like distribution with the mean centered 

on the true cost rather than the normal theoretical assumption of uniformly distributed cost estimates. In other words, 

the cost estimate of a seller, ci, follows the normal distribution, N(C, σi )  where C represents the true but unknown 

cost and σi represents the standard deviation of seller i’s cost estimation distribution. To reflect cost estimate 

advantages, we assume that seller i has a better cost estimation process than seller j, (i.e. σi ≤ σj) thus the distributions 

used to draw each the cost estimate for each seller is different making the auction asymmetric. We model the level of 

information advantage by systematically decreasing σi about C. The assumption of normally distributed cost 

estimates, while more realistic, greatly complicates the derivation of any analytical model, if one even exists. For the 

model presented below, we use a grid search process as suggested by Seydel (2003) and numerical integration via 

Maple 13 (2009) to determine the equilibrium solution for a two-sellerand a three-seller FPSB procurement auction. 

The equilibrium solution presented here represents a bidding strategy where any seller unilaterally deviating from 

this strategy would result in an inferior solution. As such, it represents a best response strategy by either seller given 

the strategy of the other seller(s).  

The model presented here considers a CV auction for a single non-divisible object between two or three risk 

neutral sellers who each submit a bid to a single buyer. The lowest of seller bids is selected as the winner. Each 

seller’s cost estimate is private information and is randomly drawn from a normal distribution unique to each seller.  

We initially assume that all sellers are symmetric with a common cost estimation distribution. We then introduce 

asymmetries by assuming one seller becomes advantaged by decreasing the standard deviation of their cost estimate 

distribution.   

Assume the following notation: 

C  the common cost,   

ci     bidder i’s estimated cost => ci is taken from a normal distribution with a mean of C and a standard  

deviation of   , 

mi   one plus the markup for bidder i (e.g., a 15% markup implies mi=1.15), 

t   bid amount => t=  mi ci, 

fi(t)   the probability density of bidder i’s bid amount => mi normal (C,  ), 

Fi(t)  the cumulative distribution of bidder i’s bid amount, 

πi   expected profit for each bid submitted by bidder i, 
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Note, when necessary, we replace the subscript i in the above notation with a to represent an advantaged seller and d 

to represent a disadvantaged seller. 

Our approach to find equilibrium is to first determine the expected profit equation for each seller as a 

function of that seller’s cost estimation probability density functions and markup. It follows that the expected profit 

for each bid submitted by seller i is:  

 πi = ∫           ∏ (       )      
 

  
     (1)  

where K is the set of all competitors of seller i.  

To calculate πi, we define several probabilities: the probability of winning a bid and realizing negative profit, (  
    

and the probability of winning a bid and realizing non-negative profit (  
  .  

   
  ∫      ∏ (       )             

  

  
     (2) 

   
  ∫      ∏ (       )             

 

  
     (3) 

Note that (  
   and (  

   are joint probabilities.  It follows therefore that the probability of seller i winning a bid is: 

  Pi= ∫      ∏ (       )             

 

  
or alternatively,            (4) 

 Pi =   
  +   

         (5) 

 

For each seller i, we report the expected profit, πi, of each bid, the optimal bidding strategy, mi,  the probability of 

winning a bid and realizing negative profits (the winner’s curse),   
  , and the  probability of winning any bid, Pi.  In 

addition, we report the expected procurement cost to the buyer.  Since it is unlikely that a closed form solution for the 

above model exists, we use Maple 13 (2009) to numerically solve the above integrals, Expressions (1), (2), (3), and 

(4).    

4.0 Results and Discussion 

We consider three different procurement auctions. For ease of presentation purposes only, we assume a common cost 

of ten monetary units, C=10 for all auctions. Our assumption of a common cost of ten for each auction does not alter 

the fact that each seller does not know what this common cost is and must still rely on an estimate in preparing their 

bid amounts. Each seller draws an estimate of the unknown C, ci, that is normally distributed, N(10, σi). Initially we 

assume σi=1.5 for each seller. We systematically decrease σi in increments of 0.25   to reflect different levels of an 

information advantage enjoyed by an advantaged seller relative to a disadvantaged seller. In this manner, we can 

illustrate more clearly the impact of different levels of estimating precision on seller bidding strategies. In Case 1, we 

consider a two-seller auction where one seller is advantaged, in Case 2 we consider a three-seller auction where one 

seller is advantaged, and in Case 3 we consider a three-seller auction where two sellers are advantaged. Since the 

results vary between these three auctions, we discuss the results on a case by case basis. We conclude our discussion 

of results by focusing on the expected procurement cost for the buyer.  

4.1 Case 1: Two-seller auction 

Table 1 shows the results in a two-seller auction with one advantaged seller. As the advantaged seller becomes more 

advantaged to the point where he has perfect information regarding product cost, (σa decreases from 1.5 to 0.0 in 

increments of 0.25), her optimal bidding strategy is to bid more aggressively as evidenced by decreases in ma from 

30.2 to 20.8. In other words, as the level of uncertainty for the advantaged seller decreases while the uncertainty for 

the disadvantaged remains unchanged, the advantaged seller submits increasingly more aggressive bids relative to the 

disadvantaged seller. The aggressive bidding by the advantaged seller is consistent with the predictions made in 

Hausch (1987) and Laskowski and Slonin (1999).  In addition, as the difference in cost estimate uncertainty 

increases, the disadvantaged seller also adopts an aggressive bidding strategy though at a lower rate than the 

advantaged seller, md decreases from 30.2 to 19.4. For ease of illustration, Figure 2 shows how bidding strategies and 

expected profits change as the level of uncertainty decreases for the advantaged seller relative to the disadvantaged 

seller. In conjunction with this increase in advantage, expected profit for the advantaged seller, πa, increases slightly 

from 0.959 to 0.985. While the decreases in σa represent a major improvement in estimating ability by the advantaged 

seller, thereby reducing their level of uncertainty, her gains in profit are somewhat marginal. On the other hand, as 

the disadvantaged seller becomes more disadvantaged, the reductions in profit are much more severe, πd decreases 

from 0.959 to 0.327. While previous research has shown that the advantaged seller will experience greater profits  
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Panel A: Case 1 - Two sellers 

 

Panel B: Case 2 - Three Sellers w/ one Advantaged 

 

Panel C: Case 3 - Three Sellers w/ two Advantaged 

 
Figure 2: Seller Bidding Strategies and Expected Profits 
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than the disadvantaged seller (Hausch, 1987; Kagel and Levin, 1999; Laskowski and Slonin, 1999, Bannerjee, 2005), 

what is novel here is that the difference in expected profits is due more to the decrease in profits by the 

disadvantaged seller than any increase in profits by the advantaged seller. This is clearly shown in Panel A of Figure 

2 where the markups for the two sellers are very similar yet the resulting expected profits are dramatically different. 

 

σ 

σd = 1.5 

 

Markups (%) 
Expected Profit per 

Bid 

Probability of 

Winning Bid 

Probability of 

Winner’s Curse 

Mean Cost 

Estimate of 

Winning Bid 

Adv. 

Bidder 

Adv. 

Bidder 

Disadv.   

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

1.5 30.2 30.2 0.959 0.959 0.5 0.059 0.059 0.059 9.154 9.154 

1.25 27.8 27.4 0.964 0.803 0.493 0.075 0.039 0.075 9.355 9.092 

1 25.6 24.8 0.965 0.656 0.484 0.092 0.018 0.092 9.546 9.033 

0.75 23.8 22.6 0.968 0.529 0.479 0.523 0.005 0.109 9.717 8.982 

0.5 22.4 21 0.977 0.427 0.471 0.529 0 0.124 9.865 8.932 

0.25 21.4 20.4 0.985 0.355 0.469 0.531 0 0.133 9.96 8.862 

0 20.8 19.4 0.985 0.327 0.469 0.531 0 0.139 10 8.859 

TABLE 1: Seller Bidding Strategies and Expected Profits for a Two-seller asymmetric auction with one 

advantaged seller 

As the level of cost uncertainty between sellers increases, the probability of the advantaged seller winning a bid 

decreases from 50% to 46.9% while the probability for the disadvantaged seller winning a bid increases from 50% to 

53.1%. So, as the accuracy of cost estimates by the advantaged seller improves, πa will increase despite winning 

fewer bids while πd will decrease despite winning more bids. Lastly, the probability of the advantaged seller incurring 

the winner’s curse decreases as her uncertainty over costs decreases, 5.9% to zero, while the probability of the 

winner’s curse for the disadvantaged seller increases from 5.9% to 13.9%. The explanation for these results is 

relatively straightforward. As the advantaged seller’s cost estimates improve, thereby reducing their uncertainty, her 

mean cost estimate for a winning bid increases from 9.154 to the true common cost of 10.0.  For the disadvantaged 

seller, the mean cost estimate of a winning bid decreases from 9.154 to 8.859. It is clear that the disadvantaged seller 

will win more bids but will make less profit on these bids given their aggressive bidding.  

The results presented here suggest that when a seller improves her ability to estimate product costs relative 

to a single competitor, she will realize a marginal increase in profits, adopt a more aggressive bidding strategy, and 

incur the winner’s curse less often. While these results are consistent with previous research, these results illustrate 

the systematic change in profits and bidding strategies across several levels of cost uncertainties for advantaged and 

disadvantaged sellers. Further, these results show that in a two-seller auction with one advantaged seller, the profit of 

the advantaged seller is relatively unchanged as cost uncertainty is decreased compared to the profit of the 

disadvantaged seller which decreases dramatically.  

4.2 Case 2: Three-seller auction with one advantaged seller 

Table 2 shows the results for a three-seller auction with one advantaged seller while Panel A of Figure 2 graphically 

illustrates these results. As the cost uncertainty decreases for the advantaged seller relative to the cost uncertainty for 

the two disadvantaged sellers, her optimal strategy is to adopt a much more aggressive bidding strategy than the two 

disadvantaged sellers, ma decreases from 25.4% to 16.6% while md for the two disadvantaged sellers decreases from 

25.4% to 24.2%.  While both types of sellers do adopt a more aggressive bidding strategy, when there are multiple 

disadvantaged sellers competing against a single advantaged seller, as the degree of uncertainty in cost estimates 

decreases for the advantaged seller relative to the disadvantaged sellers, the advantaged seller will submit 

increasingly more aggressive bids while the bidding strategies of to the disadvantaged sellers change only slightly 

(Panel B Figure 2). Despite the almost unilateral increase in aggressive bidding by the advantaged seller, πa increases 

from 0.316 to 0.719, while πd , decreases from 0.316 to 0.087 (see Panel B Figure 2). This is due in part to the fact 

that the mean cost estimate by the advantaged seller for a winning bid increases from 8.73 to 10.0, while for the two 

disadvantaged sellers, it decreases from 8.730 to 8.30. Despite the aggressive bidding by the advantaged seller, the 

advantaged seller’s probability of winning a bid actually increases from 33.3% to 43.3% while for the two 

disadvantaged sellers the probability decreases from 66.6% to 56.7%. So while the impact on the advantaged seller is 

marginal in a two-seller auction, in a three-seller auction with two disadvantaged sellers, the impact on the 

advantaged seller is more substantial and positive and come at the expense of the two disadvantaged sellers who 

share the losses. Shown in Panel B of Figure 2, as the relative level of cost uncertainty between the two types of 
sellers increases, the seller with less uncertainty will increasingly bid more aggressively, will realize substantially 

greater profits, will win more rather than fewer bids, and will incur the winner’s curse less often.   
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σa 

σd = 1.5 
Markups (%) 

Expected Profit per 

Bid 

Probability of 

Winning  Bid 

Probability of 

Winner’s Curse 

Mean Cost 

Estimate of 

Winning Bid 

Adv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

1.5 25.4 25.4 0.316 0.316 0.333 0.667 0.08 0.16 8.73 8.73 

1.25 22.2 24.8 0.393 0.25 0.358 0.64 0.065 0.171 9.082 8.637 

1 19.8 24.6 0.484 0.199 0.387 0.611 0.043 0.176 9.391 8.547 

0.75 18.3 24.3 0.567 0.153 0.403 0.595 0.016 0.182 9.642 8.457 

0.5 17.4 24.2 0.643 0.12 0.417 0.582 0.001 0.184 9.831 8.383 

0.25 16.8 24.2 0.693 0.096 0.429 0.571 0 0.185 9.96 8.32 

0 16.6 24.2 0.719 0.087 0.433 0.567 0 0.185 10 8.3 

TABLE 2: Seller Bidding Strategies and Expected Profits for a Three-seller asymmetric auction with one 

advantaged bidder 

4.3 Case 3: Three-seller auction with two advantaged sellers 

When two advantaged sellers compete against a single disadvantaged seller has not been considered in the prior 

literature. These results, shown in Table 3 and illustrated in Panel C of Figure 2, are dramatically different from the 

three-seller case with only one advantaged seller. In Case 2, the two disadvantaged sellers offer little competition for 

the advantaged seller such that she is able to realize high profits at the expense of the disadvantaged sellers. In Case 

3, competition for an advantaged seller is greater since each seller must compete against another advantaged seller 

and only one disadvantaged seller. As cost uncertainty for the advantaged sellers decreases, both are forced to adopt a 

more aggressive bidding strategy, Panel 3 Figure 2. In conjunction with this aggressive bidding, πa for the two 

advantaged sellers initially increases at a relatively modest rate, 0.316 to 0.359, as sa approaches 0.75. Over this 

same change in cost uncertainty, the disadvantaged seller adopts an extremely conservative bidding strategy whereby 

md increases from 25.4 to 75.0. The result is that πd decreases from 0.316 to essentially zero where the disadvantaged 

seller has a zero probability of winning a bid. As shown in Panel C Figure 2, there is a point where increases in the  

 

relative difference in estimating uncertainty between the two types of sellers results in the disadvantaged seller 

having to exit the market at which point further reductions in cost uncertainty for the two advantaged sellers actually 

results in a decrease in their profitability. In this instance, the two advantaged sellers essentially end up in a 

symmetric two-seller auction where, at the extreme, each seller has perfect information regarding the cost of the 

product, sa  = 0. At this point, neither of the advantaged sellers can make a positive profit as the optimal solution is 

to bid their estimate of cost. These results show that the disadvantaged seller is in a precarious situation when she 

competes against two advantaged sellers. In this scenario, the optimal strategy for a disadvantaged seller is to bid less 

aggressively by dramatically increasing their mark-up. However, this strategy is only viable so long as the 

advantaged sellers are not too advantaged. 

σa 

σd = 1.5 

 

Markups (%) 
Expected Profit 

per Bid 

Probability of 

Winning  Bid 

Probability of 

Winner’s Curse 

Mean Cost 

Estimate of 

Winning Bid 

Adv. 

Bidder 

Adv. 

Bidder 

Disadv.   

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

Adv. 

Bidder 

Disadv. 

Bidder 

1.5 25.4 25.4 0.316 0.316 0.666 0.332 0.161 0.08 8.731 8.731 

1.25 21.6 25.6 0.33 0.193 0.695 0.303 0.141 0.087 9.005 8.534 

1 17.4 26.6 0.349 0.095 0.77 0.228 0.126 0.076 9.291 8.228 

0.75 13.6 32.8 0.359 0.025 0.871 0.127 0.103 0.048 9.529 7.682 

0.5 9.5 75 0.318 0 0.994 0.186 0.08 0.184 9.717 5.723 

0.25 4.5 na 0.151 0 1 0 0 0 9.859 na 

0 0 na 0 0 0 0 0 0 10 na 

TABLE 3:  Seller Bidding Strategies and Expected Profits for a Three-seller asymmetric auction with two advantaged 

bidders 

4.4 Cost Uncertainties and Buyer Procurement Costs 

We now consider how cost uncertainties between sellers affect the buyer. This goes to the heart of an important 

question: Should the buyer ensure that all sellers are equal adept at estimating product costs, perhaps working more 
closely with known disadvantaged sellers during their cost estimation process, or should the buyer prefer to have a 

seller who is known to estimate their costs more accurately? Intuitively, a buyer would expect her procurement cost 

to decease as the level of competition between sellers is increased. When one seller has an information advantage 

over another, competition should be less than when neither seller enjoys an advantage. Kagel and Levin (1999) and  
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Laskowski and Slonin (1999) suggest that the buyer procurement costs will be lower with asymmetrically informed 

sellers than symmetrically informed.  

 Table 4 shows the expected cost to the buyer when sellers have the same level of uncertainty over their cost 

estimates (symmetric). In addition, expected procurement costs are shown when sellers have different levels of cost 

uncertainty (asymmetric).   If we compare results for the two-seller case, columns (2) and (4), the cost to the buyer is 

generally less when sellers are symmetric than when sellers are asymmetric. However, when an advantaged seller is 

very advantaged, sa < 0.25, the cost to the buyer is actually less than when sellers are symmetric. Therefore, it is 

situational as to whether the buyer should prefer symmetric or asymmetric sellers as the degree of the information 

advantage between the sellers is important.  In addition, if all sellers are symmetric, procurement costs to the buyer 

are reduced when all seller cost estimates are more precise, columns (2) and (3). This suggests that it may be in the 

buyers’ best interest to provide each seller with as much information pertaining to the product as possible thereby 

reducing seller information uncertainties. If the auction has an advantaged seller competing against a single 

disadvantaged seller, column (4), buyer procurement costs decrease as the advantaged seller becomes more 

advantaged. 

 
Symmetric Information Asymmetric Information 

-1 -2 -3 -4 -5 -6 

σa    σd = 1.5 Two Bidders Three Bidders 
Two Bidders/ One 

Advan 

Three Bidders/ One 

Advan 

Three Bidders/ 

Two Advan 

1.5 11.918 10.948 11.918 10.948 10.948 

1.25 11.59 10.802 11.767 10.893 10.854 

1 11.266 10.655 11.621 10.883 10.795 

0.75 10.936 10.489 11.497 10.874 10.745 

0.5 10.622 10.324 11.404 10.884 10.637 

0.25 10.302 10.302 10.16 10.892 10.219 

0 10 10 10 10.893 10 

TABLE 4: Cost to the buyer when information is symmetric and asymmetric 

When there are three sellers, buyer procurement costs are generally lower when sellers are symmetric, columns (3), 

(5) and (6). These results are consistent for the case with one or two advantaged seller(s). The worst case scenario for 

the buyer is when there is a single advantaged seller competing against two disadvantaged sellers, column (5). As a 

general rule, if an auction does include an advantaged seller, buyer procurement costs are reduced if the advantaged 

seller improves their cost estimating abilities. If however the buyer knows that all sellers are equally proficient at 

estimating costs or is able to help a disadvantaged seller with their cost estimates, it is in his best interest to increase 

the number of participating sellers.  

5.0 CONCLUSIONS 

This paper, using a FPSB procurement auction with asymmetric sellers, investigates the impact of cost estimation 

accuracy on seller bidding strategies and profitability. Based on actual data, we assume the more realistic case where 

errors in cost estimates are randomly drawn from a Normal distribution which greatly complicates the analysis, 

limiting our ability to find a closed form solution. As such, we determine equilibrium bidding strategies for both type 

of sellers using a numerical approximation approach. To the best of our knowledge, this is the first paper that 

provides equilibrium results for various levels of advantage in a common value asymmetric procurement auction 

with a specific focus on how the level and extent of advantage affects seller bidding strategies. In this paper, an 

advantaged seller has better information, less uncertainty in their cost estimates, than does the disadvantaged seller. 

Results for the two-seller and three-seller cases clearly illustrate the importance of cost estimation accuracy on the 

expected profits of the advantaged seller(s). In addition, this paper illustrates the impact on a company with less 

accurate cost estimates that competes against a company that has better cost estimates.  

 This study finds that in a two-seller auction, a disadvantaged seller will bid more aggressively than an 

advantaged seller in an effort to win bids. Our results show that while this is generally true, the difference in the level 

of aggressive bidding is only slight yet the difference in expected profits is dramatic. Our study extends these results 

to a three-seller auction where we find that the level of aggressive bidding depends on the number of sellers in the 

auction as well as the number of advantaged and disadvantaged sellers. Our findings also provide several predictions 

regarding bidding strategies. Indeed, when multiple disadvantaged sellers compete against a single advantaged seller, 

the optimal bidding strategy for the disadvantaged sellers is to bid rather conservatively compared to the advantaged 

seller who should bid very aggressively, taking advantage of their better cost estimates. However, when multiple 

advantaged sellers are present, the optimal strategy for the disadvantaged seller is to bid very conservatively with 

much higher markups. Even so, the disadvantaged seller is in a precarious situation.  If the advantaged sellers 

improve their cost estimation accuracy without an improvement by the disadvantaged seller, eventually the  
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disadvantaged seller will be forced out of the market.  Lastly, we find that it may be in the best interest of the buyer 

to help all sellers estimate their costs more accurately as doing so reduces their expected procurement costs. When all  

Sellers have equal information, the level of competition in the auction is increased thus both sellers must bid more 

aggressively. In summary, our results show that bidding strategies and resulting profits are situational with respect to 

the degree of advantage enjoyed by the advantaged seller(s), the number of sellers, and the number of advantaged 

sellers in the auction. 

Going forward, there is much research to be done regarding the use of procurement auctions and the role of 

information within such auctions. For example, given that the use of procurement auction has been increasing in both 

the private and public sectors, developing some type of  metric to assess the performance of the procurement 

approach regarding costs to conduct the auction, reductions in buyer procurement costs, and impact on the quality, 

reliability and performance of the item being sold. Such a metric would allow for a comparison of different auction 

mechanisms which would be helpful to buyers going forward. Another area of research is assessing the impact of 

procurement auctions on the long-term relationships between buyer and sellers. Procurement auctions are commonly 

viewed as an antagonistic approach to purchasing by many sellers. As such, does the relationship between buyer and 

seller suffer is the buyer chooses to employ a procurement auction for its purchasing needs. In regards to the role of 

information, there is still much to learn given the sparsity of previous research on asymmetric procurement auctions. 

When the auction is asymmetric, one seller, the advantaged seller, has a distinct advantage over the disadvantaged 

seller(s). The advantage can arise from better information, such as studied in this paper, or can arise from lower 

production costs. An interesting question that needs to be researched is how these two advantages interact. For 

example, one company may be cost-advantaged having a lower cost of production than its’ competitors yet may 

suffer from an information disadvantage such as the inability to accurately estimate costs. In this case, can an 

information advantage help a seller overcome any cost disadvantages?  Another area of needed research is the 

development of analytical models of more realistic scenarios.  Previous theoretical research has made very restrictive 

assumptions in order to provide closed form solutions at the expense of realism. For example, full information 

disclosure to all parties is often not available which has been the normal assumption in the literature.  What happens 

when the information known by the agents is different? Also, research has shown that bidding strategies hence cost 

estimations generally follow a bell-shaped distribution.  The development of analytical models incorporating such 

distributions is sorely needed. 
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